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A description of the front of radial cracks, appearing in a brittle elastic body under 
action of pressure arising at the wall of a cavity inside the body, was proposed in [I, 2]. 
Later, a model taking into account other forms of failure as well was formulated in [3]. 
Based on this model, calculations of the mechanical action of an explosion in brittle rock 
were carried out in [4-6]. In this paper, as in [i, 2, 5], we concentrate on the zone of in- 
tense radial fracture. 

Experimental data [7] show that at the initial stage the velocity of the radial crack 
front is determined by the propagation of some phase of the stretching azimuthal stresses, 
while the fracture zone consists of fine separate cracks. It is this particular stage that 
is described by the model in [1-3], according to which the following criterion must be satis- 
fied at the leading edge of the fracture front: 

o~ = ~,, (i) 

where o, is the tensile strength of the rock. 

A characteristic of this model is the fact that the velocity of the fracture front drops 
continuously from an initial value to zero. However, according to experimental data [7, 8], 
the velocity of the front, dropping to a value equal approximately to the velocity of Ray- 
leigh waves, remains for a long period of time practically constant and stretching stresses 
in the wave, apparently, weaken to such an extent that they are no longer strong enough to 
generate new cracks. This means that condition (i) at the stage of development of the ex- 
plosion indicated is not satisfied. In connection with this, it was proposed in [9] that (i) 
be replaced by the condition that the velocity of the fracture front R' be replaced by the 
limiting velocity of cracks Vo relative to the material 

R' -- u = v0, (2) 

where v is the value of the mass velocity in front of the fracture front. 

Let us examine the following model problem~ In an infinite medium, loaded by hydro- 
static pressure Ph, there is a spherical cavity with radius do. Initially, a pressure Po 
arises in the cavity. The medium is assumed to be elastobrittle, and we shall neglect its 
compressibility. For a sufficiently high pressure Po, fracture begins in the mass surround- 
ing the cavity. We shall examine fracture as a result of the formation of radial cracks, 
arising under the action of stretching azimuthal stresses ~ There exists a range of values 
of the pressure Po~ for which spalling fracture does not occur. We shall assume that 

po<<Pe ~, (3) 

where 0 and c are, respectively, the density and velocity of transverse waves in the unfrac- 
tured rock. In this case, it is permissible to assume that the fractured medium is also in- 
compressible and has the same density p. 

The medium contains natural fracturing, i.eo, it contains seed microcracks. The concen- 
tration of microcracks and their size are assumed to be such that the distance between the 
cracks do and their size Zo is much less than the size of the cavity do. If the stresses at- 
tain the tensile strength ~, or shear strength r,, then the microcracks begin to grow and a 
zone with fractured material forms. 

Until the stress in the medium attains critical values, fracture does not begin and, 
therefore, we have a Sharp problem. We shall present the equations describing the problem 
at this stage (the medium is incompressible) 
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902~/8 t  2 - -  Oc;,,lOr + 2(a,. -- % ) l r ,  
9 ~ (4) Ou/Or § 2u/r  = 0, o~ -- % = _9c(Ou/Or --u/r), 

w h e r e  u i s  t h e  r a d i a l  c o m p o n e n t  o f  t h e  d i s p l a c e m e n t  v e c t o r .  To s y s t e m  (4)  i t  i s  n e c e s s a r y  
t o  add  z e r o  i n i t i a l  c o n d i t i o n s  and b o u n d a r y  c o n d i t i o n s  a t  t h e  w a l l  o f  t h e  c a v i t y  

%(a0, t ) = - - P o .  (5)  

The s o l u t i o n  o f  s y s t e m  (4)  h a s  t h e  f o r m  

v = F ' ( t ) / r  ~, or = - - p F " ( t ) / r  - -  4pc2F(t)/r 3 - -  Ph, (6)  

% = - - p F " ( t ) / r  t 2pc2F(t)/r 3 -- Ph, 

w h e r e  v i s  t h e  m a s s  v e l o c i t y .  I n  d e t e r m i n i n g  t h e  f u n c t i o n  F ( t )  f r o m  t h e  b o u n d a r y  c o n d i t i o n  
( 5 ) ,  we o b t a i n  an  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  

Po - -  Ph = PF"/ao + 4pc2F/a~.  (7 )  

The primes indicate differentiation with respect to time. Equation (7) must be supplemented 
with zero initial conditions, after which the form of the function F(t) is easily determined: 

P . -  Ph [ t -  cos (2 ct (8)  

Equations (4)-(8) are valid until fracture begins at the boundary of the cavity: 

c~ (ao. t) - -  a~ (a o t) = 2T, (9)  

o r  
a~ (a0, t) = a , .  ( l O )  

Depending on which of the two conditions (9) or (i0) is satisfied in time first, shear or 
tensile fracture begins at the cavity. Using the relations presented above, it can be shown 
that in the case T, < (3/4)~,, fragmentation begins under the condition po > (2/3)T, + PH in 
the cavity at some time determined from (9). At lower pressure po, fracture does not occur 
and the problem remains purely elastic. When the reverse inequality is satisfied 

"% > (3/4) ~ ,  (ii) 

it can be shown that in the region of initial pressures in the cavity 

(1/2) a ,  -4" (3/2) Ph < Po < 2"~, - -  0 ,  (12)  

radial cracks begin to grow away from the cavity at some time. 

Shear failure in this case does not occur; it begins at higher pressures in the cavity. 
Concentrating only on the propagation of the radial fracture front, we shall assume that con- 
ditions (ii) and (12) are satisfied. In this case, after the stage of purely elastic expan- 
sion of the cavity, a zone with radial cracks forms around it. 

At the initial time of fracture to, determined from (i0), we have from (6) and (8) 

a, ~ Po-? a ,  (13)  
y ( t o ) = % ,  F ' ( t o ) = % % =  6 o~  , 

i . . . .  

~x = -6- .o--? ~. o Ph) ~ (Po 2 a ,  3ph) 2. 

Expressions (13) are initial conditions for the solution of the problem at the fracture stage. 

As noted previously, it may be assumed that the density of the rock does not change with 
fracturing. For this reason, in order to describe the fractured region, Eqs. (4), in which 
the last equation (Hooke's law) must be replaced by the condition [i] 

% = o. (14) 

are applicable. The solution of Eq. (14), satisfying the boundary condition (5), has the 
form 
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~" ' t  ~ a # "  ~, =.clio'. t )1,", ~ .  = 0 ob ( t ) l r  - -  ~)~b~ ( t ) l r  ~ - -  poa~/r2~ (15) 

Equations (15) describe the solution in the fracture zone. In the unfractured zone, as be- 
fore, Eqs. (4) are used and, therefore, the solution in the form (6). We shall denote the 
unknown function F(t) entering into (6)as f(t). The problem will be solved if it is possi- 
ble to determine the functions b(t), f(t) and the size of the zone of intense radial fractur" 
ing R(t). 

In order to determine the three unknown functions b(t), f(t), R(t), it is necessary to 
write three equations: three conditions for joining solutions at the fracture front. For 
the first two equations, we shall choose the laws of conservation of mass and momentum. As- 
suming that the density of the medium does not change with fracturing, and using Eqs. (6) and 
(7) as well, these two equations can be put into the form 

a~b (t) = f (t), p (2R ~ - -  aoR) 1" + 40c21 = poa~ R --  phlrls. (16 )  

I f  t h e  d e p e n d e n e e  o f  t h e  r a d i u s  o f  t h e  f r a c t u r e  f r o n t  R on  t i m e  i s  known ,  t h e n  t h e  f u n c t i o n s  
b ( t )  and  f ( t )  a r e  d e t e r m i n e d  f r o m  ( 1 6 ) .  I n  t h e  c a s e  R = a o  ( f r a c t u r e  h a s  n o t  b e g u n ) ,  E q s .  
( 16 )  go o v e r  i n t o  ( 7 ) .  I n  t h e  c a s e  R = c o n s t  > c o  ( f r a c t u r e  h a s  c e a s e d ) ,  i t  f o l l o w s  f r o m  
(16 )  t h a t  

4pcZ q - C ,  COS V2R2 aoR tV2RZ ao R , (17) 

where C,, C2 are arbitrary constants. Comparing (17) and (8), it is evident that in the pres- 
ence of the fracture zone, the period of oscillations of particles in the medium increases. 

In general, when the form of the function R(t) is not known, the system (19) must be sup- 
plemented by one more equation: the fracture criterion~ Let us assume that the functions 
f(t) and R(t) can be represented as series in some vicinity of the point to (time of initial 
fracture)i 

R(t)= ~ An (t -- tol", f (t) = ~ Dn(t-- to)', (18) 

where Ao = co. In the case of the fracture criteria used in what follows, the validity of 
the expansions (18) can be proved using Cauchy's theorem for ordinary differential equations 
with a holomorphic right side. 

From the initial conditions (13), it follows that O0=~0, 01=~i Using the represen- 
tation (18), we obtain from (6) and (16) to within terms of order (t -- to) 2 

oo o. + <,-,o> + , .  + o.)}[oo. (19) 

where V = A, is the initial value of the velocity of the fracture front. It is evident from 
(19) that the higher the velocity of the fracture front V, the more rapidly the azimuthal 
voltages at leading edge of the front ~(R, t) decrease with time. This assertion is valid 
not only for times close to the onset of fracture, but for other times as well. 

The formation of a zone of intense radial fracturing is related to two fracture mecha- 
nisms. First, multiple quasi-three-dimensional crack formation can occur on the fracture 
front. In this case, the azimuthal stretching stresses at the leading edge of the front 
must be less than the threshold stresses o,, while the velocity of the front R'(t) must not 
be less than the velocity of growth of a single crack vo. A simple and natural criterion for 
fracture in this case is relation (i). It should be emphasized that this criterion is valid 
only in the case R'(t) > vo. Second, when the velocity of the fracture front decreases to 
the value vo, processes related to the growth of a system of interacting mainline cracks be- 
come important. 

In order to clarify the nature of the interaction of cracks, we shall examine a two- 
dimensional model problem. Assume that we have an infinite system of parallel cracks of 
length 2Z in the xy plane, situated symmetrically relative to the y axis separated by a dis- 
tance of 2d. The cracks are located in an external homogeneous field of stretching stresses 
oo. It is necessary to determine the motion of such a system of cracks. This problem 
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was examined in [I0], where it was shown that the motion of cracks is unstable. Let every 
other crack have an identical increment to its length. Then, the velocity of the longer 
cracks increases, while the velocity of the shorter cracks decreases until they are no longer 
separated. A new system of cracks separated by distance 4d is formed, for which the same pro- 
cedure can be carried out. Thus, with time, the distance between cracks increases, while 
their velocity increases. These results, obtained in [I0], are related to the interaction 
of cracks, which is important for d<< / 

In a real medium, there is some distribution of cracks with respect to length. Then, 
as is evident from the results presented above, the velocity of the longest cracks, forming 
the fracture front, rapidly increases to a limiting value vo, while the shorter cracks stop, 
i.e., the velocity of the fracture front can be assumed to be constant: 

l'(t) = R'(t) = v0, (20) 

while the number of growing cracks decreases. 

It is known that for the continuation of a crack, the stress approaches infinity accord- 

ing to the law ay = K/]/2AI , where A is the distance from the tip of the crack; I is the in- 
tensity coefficient, which is determined from a solution of the appropriate elastic problem. 
The condition for growth of a system of cracks described above can be written in the form 

aoVs = const, (21) 

where the quantity a0~ up to a numerical factor coincides with the static value of the 
stress intensity coefficient in the case d<<l, while the factor ~(Z') takes into account the 
dynamic effects, arising with the motion of cracks. Taking into account (20), (21) can be 
represented in the form o0V~ = const. In application to the problem of the expansion of a 
cavity, we shall write this condition as 

d/do = (a, la~)~ (22) 

where  av i s  t he  v a l u e  o f  the  a z i m u t h a l  s t r e s s e s  a t  t he  l e a d i n g  edge o f  t h e  f r a c t u r e  f r o n t ;  
do is the initial distance between cracks (parameter of natural fracturing of rock). 

Thus, for propagation of a fracture front formed by a system of main line cracks, we 
shall use the criterion (20), which on the strength of (3) coincides with criterion (2) pro- 
posed in [9]. In this case, the distance between cracks (and, therefore, the number of grow- 
ing cracks) is a variable quantity and is determined from (22)~ 

The results presented above are strongly related to the interaction of cracks, i.e., to 
the condition d<<l �9 Since it is clear a priori that the size of the zone of intense radi- 
al fracturing, on the strength of (12), will be of the order of the cavity sizes, for simplic- 
ity, we shall take the condition for applicability of all the equations presented above in 
the form 

d << a0. (23) 

F u r t h e r  p r o p a g a t i o n  o f  the  f r a c t u r e  zone (and a c t u a l l y  a s m a l l  number o f  n o n i n t e r a c t i n g  
c r a c k s )  f a l l s  o u t s i d e  the  s cope  of  t he  p r o p o s e d  model  and w i l l  n o t  be examined .  

Depending  on t he  p a r a m e t e r s  o f  t he  p r o b l e m ,  t he  f o l l o w i n g  c a s e s  a r e  p o s s i b l e .  For  gas  
p r e s s u r e s  i n  t he  c a v i t y  Po < ( 1 1 2 ) o ,  + ( 2 / 2 ) p  h ( t h e  r e g i o n  I i n  F i g .  1 ) ,  t h e  p rob lem becomes 
p u r e l y  e l a s t i c .  For  p r e s s u r e  i n  t he  c a v i t y  Po > 2~, -- o ,  ( r e g i o n  IV i n  F i g .  1 ) ,  i n  t h e  v i -  
c i n i t y  o f  a c r a c k ,  s h e a r  f r a c t u r e  b e g i n s .  I n  t h e  i n t e r m e d i a t e  p r e s s u r e  r a n g e  po ,  t h e  f r a c -  
t u r e  zone i s  formed by r a d i a l  c r a c k s .  We s h a l l  i n t r o d u c e  t h e  q u a n t i t y  p , ,  d e t e r m i n e d  f rom 
t he  e q u a t i o n  

V 9  (p,  - -  ph) ~ - -  (p ,  - -  3ph - -  2a,) 2 = v0((2/3) p ,  ~- Ph ~-(ti/3) a , ) / sec .  (24) 

I t  can be shown t h a t  i n  t h e  c a s e  p ,  < po < 2T, -- o ,  ( r e g i o n  I I I  i n  F i g .  1 ) ,  t h e  f r a c t u r e  on 
the cavity begins according to criterion (i), and then, when the velocity of the fracture 
front drops to the value Vo, the propagation of the fracture front is described by criterion 
(20). In the case (1/2)o, + (3/2)Ph < po < p, (region II in Fig. i), fracture from the very 
beginning is determined by criterion (20). 

The fracture criterion (i) or (20) and Eq. (16) form a complete system for determining 
the unknown functions b(t), f(t), R(t). In the case of volume fracturing (i), the problem 
reduces to a numerical solution of ordinary differential equations. For growth of a system 
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of main line cracks R = Ro + Vo(t -- to), we obtain from (16) 
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for the function f(t) a differ- 
ential equation, whose solution is expressed in terms of the hypergeometric function. The 
results of the calculations are presented in Figs. 2-6o In all variants of the calculation, 
~he following values of the parameters were taken: Vo = 0.8 sec, ao = 100do. The calcula- 
tion was terminated when condition (23) d = ao was satisfied. 

Figure 2 presents the dependence of the velocity of the fracture front on time for ini- 
tial pressures po = 1.5o, and Po = 2~, (curves 1 and 2, respectively) in the cavity. The 
back pressure in both cases was assumed to equal zero~ The dashed line corresponds to pres- 
sures in the cavity po~ p,, where p, is defined in (24). 

Figure 3 presents the azimuthal stresses o~(R. ~/o. at the leading edge of the fracture 
front as a function of the size of the fracture zone R/ao with pressures in the cavity po = 
2o,. Curves 1 and 2 correspond to the back pressure Ph = ~* and Ph = 0.5o,, while curves 3 
and 4 to the back pressure Ph = 0.2~, and Ph = 0. It is evident that the stage of quasivolume 
fracturing (curves 3 and 4) takes up an insignificant part of the overall fracture time. 

Figure 4 shows the dependence of the cavity radius on time. Curves 1 and 2 correspond 
to pressures in the cavity po = 2o, and po = 1.2~,. The back pressure in both cases equals 
zero. The dashed lines are the same curves, but obtained by solving a purely elastic prob- 
lem. 

Curves 1 and 2 in Fig. 5 give the finite radius of the zone of intense radial fractur- 
ing as a function of pressure Po/O* with lithostatic pressure Ph = 0 and Ph = 0.25~,, corre- 
spondingly, at the condition for terminating the calculation (23). 

Figure 6 shows the average distance between cracks d/do as a function of the coordinate 
r/ao. Curves 1-3 correspond to pressure in the cavity po = 0.5~,, po = o, and Po = 2o,. The 
back pressure in all three cases equals zero. 

Thus, it is shown in this paper that with the formation of a zone of intense radial frac- 
turing, two fracture mechanisms play an important role: quasivolume9 in which multiple crack 
formation occurs on the fracture front~ and growth of a system of mainline cracks with which 
new cracks are not formed on the fracture front. It is shown for the solution of a model prob- 
lem of the action of a spherically symmetrical explosion how one of the fracture mechanisms 
transforms into the other. The dependences of oscillations of the particles in the medium in 
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the mass surrounding the cavity and the dependence of the average size of a piece on radius 
are obtained. The dependence of the fracture front velocity on time coincides qualitatively 
with the experimental dependence. 
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